The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design.
نویسندگان
چکیده
The peripheral anionic site of acetylcholinesterase lies at the entrance to the active site gorge. It is composed of five residues (Tyr 70, Asp 72, Tyr 121, Trp 279 and Tyr 334; Torpedo numbering); associated with it are a number of surface loops, conferring a high degree of conformational flexibility on the area. The site is involved in the allosteric modulation of catalysis at the active centre and is the target of various anti-cholinesterases. It is also implicated in a number of non-classical functions, in particular, amyloid deposition, cell adhesion and neurite outgrowth. A number of peptide and protein ligands for the site have been identified. In this review, the structure and multiple functions of the peripheral anionic site are discussed, together with its potential as a target in rational drug design for the development of novel and improved inhibitors and of therapeutics for the treatment of neural cancers, nerve regeneration and neurodegenerative disorders such as Alzheimer's disease.
منابع مشابه
The crystal structure of a complex of acetylcholinesterase with a bis-(-)-nor-meptazinol derivative reveals disruption of the catalytic triad.
A bis-(-)-nor-meptazinol derivative in which the two meptazinol rings are linked by a nonamethylene spacer is a novel acetylcholinesterase inhibitor that inhibits both catalytic activity and Abeta peptide aggregation. The crystal structure of its complex with Torpedo californica acetylcholinesterase was determined to 2.7 A resolution. The ligand spans the active-site gorge, with one nor-meptazi...
متن کاملComplexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge.
The X-ray crystal structures were solved for complexes with Torpedo californica acetylcholinesterase of two bivalent tacrine derivative compounds in which the two tacrine rings were separated by 5- and 7-carbon spacers. The derivative with the 7-carbon spacer spans the length of the active-site gorge, making sandwich interactions with aromatic residues both in the catalytic anionic site (Trp84 ...
متن کاملAcetylcholinesterase: 'classical' and 'non-classical' functions and pharmacology.
The synaptic enzyme acetylcholinesterase (AChE) terminates transmission at cholinergic synapses by rapidly hydrolysing acetylcholine. It is anchored within the synaptic cleft by a highly specialized anchoring device in which catalytic subunit tetramers assemble around a polyproline II helix. AChE is the target of nerve agents, insecticides and therapeutic drugs, in particular the first generati...
متن کاملStructure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs.
BACKGROUND Several cholinesterase inhibitors are either being utilized for symptomatic treatment of Alzheimer's disease or are in advanced clinical trials. E2020, marketed as Aricept, is a member of a large family of N-benzylpiperidine-based acetylcholinesterase (AChE) inhibitors developed, synthesized and evaluated by the Eisai Company in Japan. These inhibitors were designed on the basis of Q...
متن کاملDevelopment of a Broad-spectrum Oxime for the Treatment of Nerve Agent Toxicity
Inhibition of synaptic acetylcholinesterase (AChE) by organophosphate (OP) nerve agents is the main reason for their toxicity. Oximes are used as antidotes to reactivate nerve agent-inhibited AChE. To understand the mechanism of oxime-induced reactivation, we generated several mutant AChEs. Reactivation studies conducted with wild-type and mutant AChEs revealed that the peripheral anionic site ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current pharmaceutical design
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2006